
Microsoft .NET Distributed Technology
Sukasom C.

School of Informatics
University of Edinburgh

I. I NTRODUCTION

The concept of Service Oriented Architecture (SOA) is
getting popular today. It took 40 years to achieve the point
where we can write software component to be more modular
enough to represent a service [8] [18]. In SOA architecture,
each department provides services. The whole SOA infrastruc-
ture is easy to maintain, because each service is maintained
independently from various departments. It is easy to remove
or add a service to an existing infrastructure without much
trouble to other existing services. Distributed technology is
needed to connect services in an infrastructure together to
perform a business task.

Distributed technology is used to enable an application
to extend its process to more than one computer, and its
goal is to improve performance and scalability [9]. There
are many distributed technologies running on various plat-
form including Microsoft and Java. This paper focusses on
aspect of programmability of the current generation of dis-
tributed technology which comprises .NET Web Service, .NET
Remoting and Microsoft Message Queuing (MSMQ) from
Microsoft based on .NET Framework. Different technologies
and different platforms have different programming models.
Programmability aspect is important to todays business. Some-
thing which is easy to build or maintain helps keeping the
cost of development and maintenance down. It also can help
the company to move forward faster in terms of information
technology.

Sun Microsystem also made a lot of distributed technology
specification including Java Web Service, Enterprise Java Bean
(EJB), and Java Message Service (JMS). There are a lot
of vendors implementing these specification such as Oracle,
IBM, BEA, or Sun Microsystem itself. Vendors typically
sell their implementations in the form of application servers.
These implementations provide APIs for implementing Java
distributed technologies to run on application servers. Not all
vendors adheres to the specifications, so it is possible thata
distributed application may not work 100% on different appli-
cation servers from different vendors. Finding programmers
with particular knowledge in specific application servers or
environment editors is difficult, because there are so many
tools and application servers. For Microsoft, knowledge can
be consolidated through one tool, Microsoft Visual Studio
(Visual Studio), and one application server, Microsoft Internet
Information Services (IIS).

An overview architecture of each technology is given to
aid the reader’s understanding. The paper also compares each

.NET distributed technology with a relevant Java distributed
technology. The paper also gives a quick overview of the
next generation .NET distributed technology which is Window
Communication Foundation (WCF).

Section 2 discusses .NET Web Service distributed technol-
ogy. Section 3 discusses .NET Remoting distributed technol-
ogy. Section 4 discusses Microsoft Message Queuing (MSMQ)
distributed technology. Section 5 gives a quick overview ofthe
next generation distributed technology from Microsoft, Win-
dows Communication Framework (WCF). Section 6 concludes
the paper.

II. .NET WEB SERVICE

Web Services is a technology that enables an application to
call services on another computer. Web Services usually uses
the HTTP protocol as a transport mechanism. A web service
server and a client can reside across the Internet. Requests
and responses to web services do not usually get blocked by
firewalls, because firewalls do not usually block HTTP ports.

A. An Architecture Overview

There are two main parties involved in the Web Services
architecture. These are a web service server who provides a
service and a client who consumes a service. Fig. 1 illustrated
a scenario of using a web service. In the scenario, there is the
XML web service in the bottom left and the ASP.NET web
application in the middle. The ASP.NET web application, a
consumer, calls the XML web service, a provider. It is simply
requests and responses between web service providers and
consumers.

A web service makes use of the SOAP (Simple Object
Access Protocol) protocol to transport a message. Data in
a SOAP message is explainable in itself, but the size of a
SOAP message is larger than the size of a binary file for
the same amount of data. Fig. 2 illustrates main components
in a SOAP message. A SOAP Message can be considered
as an envelope containing a header and a body [16] [3] [6].
The header section is usually stores metadata or credential
data such as a certificate. The body section stores data. Web
services uses the HTTP to transport a SOAP message. Other
protocols such as the SMTP can be configured to transport a
SOAP message as well.

A web service may publish its accessing information in a
Web Service Definition Language (WSDL) file to a Universal
Description Discovery and Integration (UDDI) server. Devel-
opers can query the UDDI server for a WSDL file of the
desired web service. In practical, developers usually obtain



Fig. 1. Full life cycle of web service. Source : MacDonald, Matthew, and
Szpuszta, Mario: Pro ASP.NET 2.0 in C♯ 2005, Apress, 2005. 7 November
2007.

Fig. 2. SOAP components. Source : Cauldwell, Patrick, Chawla, Rajesh,
Chopra, Vivek, Damschen, Gary, Dix, Chris, Hong, Tony, Norton, Francis,
Ogbuji, Uche, Olander, Glenn, Richman, Mark A., Saunders, Kristy, and Zaev,
Zoran: Professional XML Web Services, Apress, 2004. 8 November 2007.

a link to a WSDL file from other sources such as Internet
or other developers. A WSDL file is needed by a client to
generate a proxy class.

B. Development

Developers can turn a regular method in a regular class
into a web service by applying theWebMethodattribute

public class EmployeesService :
System.Web.Services.WebService

{
[WebMethod()]
public int GetEmployeesCount()
{ ... }

[WebMethod()]
public DataSet GetEmployees()
{ ... }

}

Fig. 3. Turning a method to a web service by applying thewebmethod
attribute. Source : MacDonald, Matthew, and Szpuszta, Mario: Pro ASP.NET
2.0 in C♯ 2005, Apress, 2005.

<%@ WebService Language="C#"
Class="EmployeesService" %>

Fig. 4. Declaring web service by usingWebServicedirective in the aspx
page. Source : MacDonald, Matthew, and Szpuszta, Mario: ProASP.NET 2.0
in C♯ 2005, Apress, 2005.

...
// Create the proxy.
EmployeesService proxy

= new EmployeesService();
// Call the web service
// and get the results.
DataSet ds = proxy.GetEmployees();
...

Fig. 5. A part of an example consuming the web service. Source:
MacDonald, Matthew, and Szpuszta, Mario: Pro ASP.NET 2.0 inC♯ 2005,
Apress, 2005.

above a method. Fig. 3 illustrates an example of turning
functions in a normal C♯ class into a web service by placing
the WebMethodattribute above the functions. A web service
can return a simple data type likeint or complex data type
like DataSet. A class hosting a web method can optionally
inherit the classSystem.Web.Service.WebService. Inheriting
from System.Web.Service.WebServicegives a class an access
to predeclared ASP.NET object variables [10].

Developers need to declare a web service in an ASP.NET
application. Declaration of the web service is done in a .asmx
file with the WebServiceattribute. Developers must supply
corresponding class through theClass attribute as shown in
the Fig. 4. Deployment can be easily done by deploying
the ASP.NET web application into the Internet Information
Services (IIS) server. The IIS server is a web application server
capable of running ASP.NET web applications.

Developers can view a WSDL file of a web service by
adding ”WSDL” to the URL of the web service. Devel-
opers can either use wsdl.exe or Visual Studio to generate
a proxy class [10]. Visual Studio hides a generated proxy
class, because it wants to reduce the complexity of codes.
Fig. 5 illustrates the process of consuming the web service
in the Fig. 3. The name of the proxy class on the client,
EmployeesService, is the same as the name of the web service
class on the server. With a generated proxy class, a client
application can treat a remote web service as a local service.
Treating a remote object as a local object reduces the code
complexity. A web service can be developed quickly with
Visual Studio [5].

C. Comparison with Java Web Service

The architecture of the Java Web Services is the same as
.NET Web Services. A Java web service also uses the SOAP
protocol for transporting a message and the WSDL for de-
scribing its service interface. There are many implementations
of Java web services API from various vendors including Sun,
IBM, Oracle and Apache. One of the popular implementations
is Axis from Apache Software Foundation [17]. Developers
can use existing an API tool like Axis from Apache to help
building a Java web service. Developing a Java web service
without tools is a time consuming task. Using a tool like
JBuilder Enterprise or IBM Websphere can ease development
processes.



III. .NET REMOTING

.NET Remoting can be used to host services or remoting
objects. A client application treats a remote object as a
local object. .NET Web Service is built for interoperability
between different platforms and across the Internet. The .NET
Remoting is recommended when a client and a server are
implemented with .NET Framework, and both of them are in
the same network. .NET Remoting can be configured to use
three transport mechanisms which are HTTP, TCP and IPC
(Inter-Process Communication).

A. Architecture Overview

.NET Remoting consists of a server which hosts a remote
object and a client application. Fig. 6 shows an overview of
the various components in the .NET Remoting architecture.
A proxy is a representation of a remote object on a client
machine. Clients call proxies. Proxies send a request to a
formatter. There are two default formatters: SOAP and binary
formatters. The SOAP formatter formats the data sent into
the SOAP format. The binary formatter formats the data into
the binary format. Using the binary formatter could obtain
a better performance than using the SOAP formatter [9].
After formatting a request, the request is sent through a
transport channel. The transport channel delivers the request
to a formatter on a server which deserializes the request. Then
the server sends the request to a hosted remoting object.

There are two mechanisms of how the server marshalling
remote objects to clients which aremarshall-by-reference
(MBR) andmarshall-by-value(MBV) [11].

• MBR : A remote object is created on a server. The server
passes a reference to a client. The client accesses the
remote object via a proxy. The proxy serializes a request
from the client. Then the server deserializes the request
and passes to an appropriate remote object [11]. MBR
can be implemented by marking a class with the attribute
serializable[15].

• MBV : A local copy of a remote object is passed to
a client. The remote object may not have an access to
resources on a server anymore when it is on the client.
MBV can be implemented by inheriting a remote class
from theSystem.MarshalByRefObjectclass. Because the
entire remote object is serialized to the client, it exposes
the internal detail of the remote object. MBV should be
used in the case of improving performance [11], [15].

1) Remote Object Types:There are three types of .NET
Remoting objects which are Single Call Objects, Singleton
Objects and Client-Activate Objects [9] [11].

• Single Call Objects : A remote object does not keep state
between multiple calls from clients. It is easy to scale
simply by adding more remote objects to serve calls from
clients.

• Singleton Objects : When there is only one remote object
created on a server. This remote object is used to serve
all client calls. It is used in the case when creating

Fig. 6. .NET Remoting Architecture. Source : Rammer, Ingo, and Szpuszta,
Mario, ”The .NET Remoting architecture (simplified).” Advanced .NET
Remoting, Second Edition, Apress, 2005. 6 November 2007.

a remote object is more expensive than maintaining a
remote object.

• Client-Activate Objects : A remote object is activated
when a client needs.

2) Transport Channel:HTTP, TCP and IPC are the chan-
nels available for transporting data between a client and a
server. Both SOAP and binary formatter can be configured to
use with all channels.

• HTTP : The HTTP channel is suited to transport data
across the Internet. The common formatter for the HTTP
channel is the SOAP formatter.

• TCP : The TCP channel is usually blocked by firewalls.
The common formatter for the TCP channel is the binary
formatter.

• IPC : The IPC (Interprocess Communication) channel of
Windows performs faster than the HTTP and the TCP
if a client and a remote object are in the same machine
[11]. The common formatter for the IPC channel is the
binary formatter.

B. Development

Unlike developing a web service in Visual Studio, there is
no ready template available in the Visual Studio for creating
.NET remote objects. It is difficult to develop and deploy .NET
Remoting compared with .NET Web Service [9].

First, developers simply need to create a class library project
in Visual Studio for a remote object class. This class library
project containing the remote object will be generated intoa
dll file. Then developers need to create another project for a
server application. The server application is needed to host the
remote object. In the server application Visual Studio project,
developers need to add a reference to the remote object by
adding its dll file into the project.

An example of a remote object is illustrated in Fig. 7. The
dummy classPatient represents information about a patient.
This class inherits fromSystem.MarshalByRefObject, so this
remote object is MBV type.

A configuration file is needed for a server application to
host a remote object. Fig. 8 illustrates the configuration file.
The serviceelement represents a service offered. It specifies
that the remote object is aserver-activatedobject through the



namespace MSPress.Chapter4.Remoting.Server
{

public class Patient :
MarshalByRefObject

{
public string PersonalInformation()
{

return "Patient 1: Demo Patient";
}

}
}

Fig. 7. An example of .NET remote object class. Source : SarahMorgan,
Shannon Horn, and Blomsma, Mark: MCTS Self-Paced Training Kit (Exam
70-529): Microsoft .NET Framework 2.0 Distributed Application Develop-
ment, Microsoft Press, 2007

wellknownelement. Thewellknownelement also specifies a
class of the remote object. The remote object type issingleton.
The configuration file also specifies a channel which is TCP
at port 9000 through thechannelelement.

There are four kinds of applications which can host remote
objects: ASP.NET, Windows console, Windows GUI applica-
tion, and Windows Service [12]. An ASP.NET application is
run inside the IIS server. The IIS server provides web security
framework. A server application hosted in the IIS will be
started immediately when the IIS is started. A Windows con-
sole is the easiest server application type to create. However,
it requires users to manually typing in a console to start the
server. A Windows GUI requires users to manually start the
server as well. A Windows service is a service which starts
automatically when Windows starts. Hosting in the Windows
service does not require users to start the server each time
when Windows is started, but debugging with the Windows
service could be more difficult than other types of server
applications.

Fig. 9 demonstrates the client application consuming the
remote object. First, the client application needs to create a
channel to connect to the server by instantiating an instance of
the TcpClientChannelclass. Then the client application calls
RemotingConfiguration.RegisterWellKnownClientTypemethod
to register thePatient remote object. After that, the client can
simply use this remote object by using a new keyword, and
the client application can treat the remote object as a local
object.

Developers can deploy remote objects to clients by de-
ploying an entire assembly or deploying only an interface.
Deploying an entire assembly to clients is suitable for MBV.
Deploying only an interface is suitable for MBR. Both deploy-
ment methods require developers to give an assembly file, a
dll file, to clients, so client applications can reference remote
objects as shown in the Fig. 10.

C. Comparison with Enterprise Java Bean (EJB) 3.0

We choose to compare .NET remoting with Enterprise Java
Bean (EJB) 3.0, because they have some common. Both of

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<system.runtime.remoting>

<application>
<service>
<wellknown mode="Singleton"

type="...Patient, RemotePatient"
objectUri="Patient.rem" />

</service>
<channels>
<channel ref="tcp" port="9000" />

</channels>
</application>

</system.runtime.remoting>
</configuration>

Fig. 8. An Example of .NET Remoting configuration file in a Server. Source
: Sarah Morgan, Shannon Horn, and Blomsma, Mark: MCTS Self-Paced
Training Kit (Exam 70-529): Microsoft .NET Framework 2.0 Distributed
Application Development, Microsoft Press, 2007

...
TcpClientChannel channel

= new TcpClientChannel();

ChannelServices.RegisterChannel(
channel,
false);

RemotingConfiguration.
RegisterWellKnownClientType(

typeof(Patient),
"tcp://localhost:9000/Patient.rem");

Patient newPatient = new Patient();
Console.WriteLine(

newPatient.PersonalInformation());
...

Fig. 9. An example of using a .NET remote object in a client. Source : Sarah
Morgan, Shannon Horn, and Blomsma, Mark: MCTS Self-Paced Training
Kit (Exam 70-529): Microsoft .NET Framework 2.0 Distributed Application
Development, Microsoft Press, 2007

Fig. 10. Deployment overview of a .NET remote object assembly. Source
: Titus, Tobin, Gilani, Syed Fahad, Gillespie, Mike, Hart, James, k. Mathew,
Benny, Olsen, Andy, Curran, David, Pinnock, Jon, Pars, Robin, Ferracchiati,
Fabio Claudio, Gopikrishna, Sandra, Redkar, Tejaswi, and Sivakumar, Srini-
vasa: Pro .NET 1.1 Remoting, Reflection, and Threading, Apress, 2005. 6
November 2007.



Fig. 11. Overview of MSMQ Architecture. Source : Arohi, Redkar, Carlos,
Walzer, Scot, Boyd, Richard, Costall, Ken, Rabold, and Tejaswi, Redkar: Pro
MSMQ: Microsoft Message Queue Programming, Apress, 2004. 7November
2007.

them have the concept of remote objects. A client and a server
must be in the same platform. EJB devides their remote objects
into an entity bean, a session bean, a stateless bean and a
message driven bean [14]. An entity bean represents an object
which stores some related information together. A session bean
and a stateless bean contain business methods. A message
driven bean is used for receiving a message. EJB configuration
can be done programmatically through annotation or through
a configuration file. A client must first look up a remote object
from a naming service first. A client also treats a remote
object as a local object using the bean interface. There are
many implementation of EJB containers from various vendors
including IBM, Borland, BEA and Sun. A business method in
a session bean and a stateless bean can be converted into a
web service [7].

IV. M ICROSOFTMESSAGEQUEUING (MSMQ)

Developers can use Microsoft Message Queuing (MSMQ),
Middleware, to send messages between processes on different
computers. Every message is guaranteed delivery even net-
works are temporally offline. Message sent is stored on a queue
on a remote server, and a receiver will read from the queue
[2].

A. An Architecture Overview

Fig. 11 illustrates key players in a MSMQ scenario. The
MSMQ architecture consists of a sender, a queue and a
receiver. The sender sends a message to the receiver via the
queue. There are 2 main kinds of queues which are a public
queue and a private queue. A public queue is listed in an
Active Directory. For a private queue, developers must know
the address of the private queue. Using a private queue tendsto
be faster, because it does have to deal with an Active Directory
[11]. There are two kinds of messaging: Express and Recov-
erable Messaging. Express messaging stores all messages ona
random access memory (RAM), while Recoverable Messaging
stores all messages on a physical hard disk. If a queue server
or a client is down, Recoverable Message can continue sending
messages after the queue server or the client is up.

B. Development

Developers can either program or configure to create a
queue. Developers can use the Computer Management found

Fig. 12. Using Microsoft Management Console (MMC) to createor view a
queue. Source : Sarah Morgan, Shannon Horn, and Blomsma, Mark: MCTS
Self-Paced Training Kit (Exam 70-529): Microsoft .NET Framework 2.0
Distributed Application Development, Microsoft Press, 2007. 7 November
2007.

...
string queueName

= @".\private\ShippingInbox";

MessageQueue queue
= MessageQueue.Create(queueName,true);

queue.Label = queueName;
...

Fig. 13. Part of the example of creating a queue in MSMQ. Source : Sarah
Morgan, Shannon Horn, and Blomsma, Mark: MCTS Self-Paced Training
Kit (Exam 70-529): Microsoft .NET Framework 2.0 Distributed Application
Development, Microsoft Press, 2007

...
ShippingOrder order

= new ShippingOrder();

Message msg
= new Message();

BinaryMessageFormatter formatter
= new BinaryMessageFormatter();

formatter.Write(msg, order);
...

Fig. 14. Part of the example of sending an object message to a queue
in MSMQ. Source : Sarah Morgan, Shannon Horn, and Blomsma, Mark:
MCTS Self-Paced Training Kit (Exam 70-529): Microsoft .NETFramework
2.0 Distributed Application Development, Microsoft Press, 2007



...
Message msg

= queue.Receive(tran);

BinaryMessageFormatter formatter
= new BinaryMessageFormatter();

object body
= formatter.Read(msg);

...

Fig. 15. Part of the example of sending a message to a queue in
MSMQ. Source : Sarah Morgan, Shannon Horn, and Blomsma, Mark: MCTS
Self-Paced Training Kit (Exam 70-529): Microsoft .NET Framework 2.0
Distributed Application Development, Microsoft Press, 2007

in the Administrative Tool in Control Panel to view existing
queues and create a new queue [1]. The Computer Manage-
ment tool is shown in the Fig. 12. Developers can also use
.NET supported languages like C♯ or Visual Basic to create
a queue programmatically. Fig. 13 illustrates the process of
creating a queue using C♯ programmatically. A queue can
be create by usingMessageQueue.Createstatic function of
class MessageQueue. The first important parameter of the
MessageQueue.Createis the name of the queue which is
used to distinguish this queue from other queues. Fig. 14
illustrates a part of example of a sender application. De-
velopers can write an object or a string into a message. In
Fig. 14, an object of typeShippingOrderis written to the
message. TheBinaryMessageFormatteris needed to format
the message into a binary form. Another possible formatter
is XMLMessageFormatter[2]. Fig. 15 illustrates a part of
example of a receiver application. TheRead function of
the BinaryMessageFormatterclass is used for Converting a
message into an object.

C. Comparison with Java Message Service (JMS)

JMS is an enterprise messaging where delivery is guaran-
teed. MSMQ is not Interoperability with Java Message Service
(JMS) [7]. Both of them do the same work, sending a message.
There are two main messaging architectures in JMS which
are point-to-point and publish-subscribe [19]. The point-to-
point architecture is used when an application wants to send
a message to a specific application. The publish-subscribe
architecture has a Topic which can be created by configuration
on an application server. An application would send a message
to the Topic, and then a subscribe application would a retrieve
a message from the Topic. Same with Java Web Service, JMS
is a specification. There are many API implementation from
various vendors including from Sun and IBM. Developers can
use those APIs to implement a JMS application easily.

V. A QUICK LOOK AT THE NEXT GENERATION .NET
DISTRIBUTED TECHNOLOGY : WINDOW COMMUNICATION

FOUNDATION (WCF)

Developers can construct .NET Web Service, .NET Remot-
ing and Microsoft Message Queuing (MSMQ) from .NET

Fig. 16. Unification of existing .NET distributed technology. Source : Chris
Peiris, Nishith Pathak: Pro WCF: Practical Microsoft SOA Implementation,
Apress, 2007. 9 November 2007.

framework version 1.0, 2.0 and 3.0. There are only slight dif-
ference between versions. However, there is a lot of significant
change in programming model in the new Windows Commu-
nication Framework (WCF). the WCF is a new framework for
creating a distributed application. WCF is only available in
.NET framework 3.0.

The WCF sits on top of the .NET framework providing
distributed technology to an application. The WCF is designed
to be extensible to support future communication standard
[13].

The WCF unifies exiting distributed technologies into one
programming model. Fig. 16 illustrates the WCF programming
model. The WCF enables developers to use just one method
of coding for various protocols and transports. For example,
codes for sending a message for TCP/IP and MSMQ are the
same in WCF. Previously, when programming MSMQ, devel-
oping and configuration MSMQ requires specific knowledge
which can not be used for other .NET distributed technology.
The benefit of unifying programming model helps shortening
the learning curve of developers when using a new transport
mechanism or protocol. WCF helps developers to build dis-
tributed system faster than before [13].

Unification of all programming models is possible with an
endpoint. An endpoint is an interface of each service. The
endpoint defines address, contract and binding. An address
consists of an URL, a machine name, a path, and optionally a
port number [4]. A service may have multiple endpoints where
each endpoint may use a different transport mechanism. For
example, a service may have 2 methods of accessing it. One
is TCP and another is MSMQ. Therefore, TCP and MSMQ
endpoints are needed to be declared in a configuration file
as illustrated in Fig. 17 and Fig. 18. Technology specific
coding is not needed for each method. The WCF makes it
very convenient to add or change a transport mechanism.

VI. CONCLUSION

Microsoft offers three distinct distributed technologies
which are .NET Web Service, .NET Remoting and MSMQ.



...
<endpoint

address="net.tcp://.../Exchange"
bindingsSectionName="NetTcpBinding"
contract="IExchange" />

...

Fig. 17. Endpoint Configuration with TCP as a transport mechanism.
Source : Chris Peiris, Nishith Pathak: Pro WCF: Practical Microsoft SOA
Implementation, Apress, 2007

...
<endpoint

address
="net.msmq://.../...SettleTrade"

bindingsSectionName
="NetMsmqBinding"

contract="IExchange" />
...

Fig. 18. Endpoint Configuration with MSMQ as a transport mechanism.
Source : Chris Peiris, Nishith Pathak: Pro WCF: Practical Microsoft SOA
Implementation, Apress, 2007

Each technology has a different programming model and a dif-
ferent architecture. Each technology has its own advantageand
disadvantage. Given a requirement, developers must choosean
appropriate technology to implement an application with in
given time.

.NET web service mainly uses the HTTP protocol for
sending messages. The HTTP protocol can bypass firewalls
very well. .NET web service is suitable when a client appli-
cation resides on the Internet or on a different platform. .NET
Remoting is suitable when a client is in the same intranet and
platform (.NET framework). .NET Remoting is supposed to be
faster but less interoperability than Web Services. Messaging
can be done with the Microsoft Message Queue (MSMQ).
Messaging takes advantage of asynchronous communication.
A client can send a message and forget about it, and the
client can move on to do something else. MSMQ guarantee
the delivery 100 %.

Microsoft introduces the WCF (Windows Communication
Foundation). The WCF helps reducing the coding complexity.
The WCF unifies all coding models for all .NET distributed
technologies. Thus, the WCF can help reducing the cost of
developing and maintenance distributed applications in the
long term.

Both Java and Microsoft technologies have an advantage
and a disadvantage. Java distributed technology is only a
specification. There are many vendors that implements the
specifications including Oracle, BEA, IBM, Sun and Apache.
Each vendors provide the same function interfaces but different
internal implementations. A Java distributed applicationmay
work differently on different implementations. Powerful tools
for easily creating Java distributed application from various
vendors are not free. Some Java environment tools tend to
provide more support on their application servers or their

databases. There is no unify environment tool like Visual
Studio. Developers’ knowledge is scattered on many different
implementations and tools. With Microsoft products, develop-
ers’ knowledge can be better consolidated, because there is
only one application server, IIS, and one tool, Visual Studio.
There is a free version of Visual Studio called Microsoft Visual
Studio Express which is powerful enough to create .NET
distributed applications easily. An advantage of using Java
distributed technology is a prevention from vendors lock in,
because there are more than one vendors offering the solutions.

REFERENCES

[1] MSMQ ReferencePoint Suite. SkillSoft Press, 2002.
[2] Redkar Arohi, Walzer Carlos, Boyd Scot, Costall Richard, Rabold

Ken, and Redkar Tejaswi. Pro MSMQ: Microsoft Message Queue
Programming. Apress, 2004.

[3] Patrick Cauldwell, Rajesh Chawla, Vivek Chopra, Gary Damschen, Chris
Dix, Tony Hong, Francis Norton, Uche Ogbuji, Glenn Olander,Mark A.
Richman, Kristy Saunders, and Zoran Zaev.Professional XML Web
Services. Apress, 2004.

[4] Nishith Pathak Chris Peiris. Pro WCF: Practical Microsoft SOA
Implementation. Apress, 2007.

[5] Bill Evjen, Billy Hollis, Tim McCarthy, Kent Sharkey, and Bill Sheldon.
Professional VB 2005 with .NET 3.0. Wiley Publishing, Inc., 2007.

[6] Bill Evjen, Kent Sharkey, Thiru Thangarathinam, Michael Kay, Alessan-
dro Vernet, and Sam Ferguson.Professional XML. Wiley Publishing,
Inc., 2007.

[7] Simon Guest. Microsoft .NET and J2EE Interoperability Toolkit.
Microsoft Press, 2004.

[8] Judith Hurwitz, Robin Bloor, Carol Baroudi, and Marcia Kaufman.
Service Oriented Architecture For Dummies. John Wiley & Sons, 2007.

[9] Matthew MacDonald. Microsoft .NET Distributed Applications: Inte-
grating XML Web Services and .NET Remoting. Microsoft Press, 2003.

[10] Matthew MacDonald and Mario Szpuszta.Pro ASP.NET 2.0 in C# 2005.
Apress, 2005.

[11] Shannon Horn Sarah Morgan and Mark Blomsma.MCTS Self-Paced
Training Kit (Exam 70-529): Microsoft .NET Framework 2.0 Distributed
Application Development. Microsoft Press, 2007.

[12] Dominic Selly, Andrew Troelsen, and Tom Barnaby.Expert ASP.NET
2.0 Advanced Application Design. Apress, 2006.

[13] Justin Smith. Inside Microsoft Windows Communication Foundation.
Microsoft Press, 2007.

[14] Rima Patel Sriganesh, Gerald Brose, and Micah Silverman. Mastering
Enterprise JavaBeans 3.0. Wiley Publishing, Inc., 2006.

[15] Andrew Troelsen.Pro C# with .NET 3.0, Special Edition. Apress, 2007.
[16] Paul A. Watters.Web Services in Finance. Apress, 2005.
[17] James L. Weaver, Kevin Mukhar, and Jim Crume.Beginning J2EE 1.4:

From Novice to Professional. Apress, 2004.
[18] Bobby Woolf. Exploring IBM SOA Technology & Practice. Maximum

Press, 2008.
[19] Kareem Yusuf.Enterprise Messaging Using JMS and IBM WebSphere.

IBM Press, 2004.


